ON A TWISTED JACQUET MODULE OF GL(2n) OVER A
FINITE FIELD
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ABSTRACT. Let F' be a finite field and G = GL(2n, F'). In this paper, we
explicitly describe a certain twisted Jacquet module of an irreducible cuspidal
representation of G.

1. INTRODUCTION

Let F be a finite field and G = GL(n, F). Let P be a parabolic subgroup of
G with Levi decomposition P = M N. Let 7 be any irreducible finite dimensional
complex representation of G and v be an irreducible representation of N. Let mn 4
be the sum of all irreducible representations of IV inside 7, on which 7 acts via the
character 9. It is easy to see that mn . is a representation of the subgroup M,
of M, consisting of those elements in M which leave the isomorphism class of
invariant under the inner conjugation action of M on N. The space 7y 4 is called
the twisted Jacquet module of the representation 7. It is an interesting question
to understand for which irreducible representations 7, the twisted Jacquet module
TN, is non-zero and to understand its structure as a module for M.

In [2],[1], inspired by the work of Prasad in [6], we studied the structure of
a certain twisted Jacquet module of a cuspidal representation of GL(6,F) and
GL(4, F'). Based on our calculations, we had conjectured the structure of the mod-
ule for GL(2n, F') (see Section 1 in [1]). For a more detailed introduction and the
motivation to study the problem, we refer the reader to Section 1 in [2].

Before we state our result, we set up some notation. Let F' be a finite field and
F,, be the unique field extension of F of degree n. Let G = GL(2n, F) and P = M N
be the standard maximal parabolic subgroup of G corresponding to the partition
(n,n). We have, M ~ GL(n, F) x GL(n, F) and N ~ M(n, F). We let 7 = 1y to
be an irreducible cuspidal representation of G associated to the regular character
6. Let ¥ be any character of N ~ M(n, F) and ¢y be a fixed non-trivial character
of . We let

10 --- 0
00 - 0

A=, . | €eM(n, F)
00 --- 0

Let 904 : N — C* be the character given by
1 X
va ([ §]) = votmrcax)).
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Let Hy = M; x Ms where M; is the Mirabolic subgroup of GL(n, F) and My =
wo M, wy ! where
0o ... 1
Wo=1: .-
1 ... 0
Let U be the subgroup of unipotent matrices in GL(2n, F') and Uy = U N Hyu.
Then, we get Uy ~ Uy x Uy where U; and Us are the upper triangular unipotent

subgroups of GL(n,F'). For k = 1,2, let ug : Uy — C* be the non-degenerate
character of Uy, given by

1 z12 313 - T1,n
1 xo3 --- To.n
Mk o : =0 (!E12+$23+"'+$(n71),n) .
x(n—l),n
1

Let p: Uy — C* be the character of Uy given by
p(u) = pix (u) pz (u2)

U1 0

0 UZ}EUA.

where u = {
Theorem 1.1. Let 6 be a regular character of Fyyand m = g be an irreducible
cuspidal representation of G. Then

TNpa = 9|F>< ® indIU{/:‘ 7
as My, modules.

In the case of GL(4, F)) and GL(6, F), we did explicit character computations
to establish the the structure of the module. However, to imitate these character
computations for GL(2n, F') will be tedious. In this paper, we prove our main the-
orem by using the ”multiplicity one theorem” for GL(2n, F') and completely avoid
character calculations.

Currently, we are investigating the structure of my 4, in the case when F'is a
p-adic field. We hope to write up the details at a later time.

2. PRELIMINARIES

In this section, we mention some preliminary results that we need in our paper.

2.1. Character of a Cuspidal Representation. Let I be the finite field of order
q and G = GL(m, F). Let F,, be the unique field extension of F of degree m. A
character ¢ of F,; is called a “regular” character, if under the action of the Galois
group of F, over F, § gives rise to m distinct characters of F,%. It is a well known
fact that the cuspidal representations of GL(m, F') are parametrized by the regular
characters of F,}. To avoid introducing more notation, we mention below only the
relevant statements on computing the character values that we have used. We refer
the reader to Section 6 in [4] for more precise statements on computing character
values.

Theorem 2.1. Let 6 be a regular character of F,\. Let m = my be an irreducible
cuspidal representation of GL(m, F) associated to . Let Oy be its character. If
2



g € GL(m, F) is such that the characteristic polynomial of g is not a power of a
polynomial irreducible over F. Then, we have

Os(g) = 0.

Theorem 2.2. Let 6 be a regular character of F,\. Let m = my be an irreducible
cuspidal representation of GL(m, F') associated to 6. Let Oy be its character. Sup-
pose that g = s.u is the Jordan decomposition of an element g in GL(m,F). If
O¢(g) # 0, then the semisimple element s must come from E). Suppose that s
comes from FX. Let z be an eigenvalue of s in F,, and let t be the dimension of
the kernel of g — z over F,,. Then

d—1
Os(o) = (~1)" | 307 (1= — @)+ (1 - @)
a=0

where ¢ is the cardinality of the field generated by z over F, and the summation
is over the distinct Galois conjugates of z.

See Theorem 2 in [6] for this version.

2.2. Kirillov Representation. Let F' be a finite field with ¢ elements and G =
GL(n, F). Let P, be the Mirabolic subgroup of G and let U be the subgroup of
unipotent matrices of G. In this section, we recall the Kirillov representation of
the Mirabolic subgroup P, of G. Let 1y be a non-trivial character of F' and let
1 : U — C* be the non-degenerate character of U given by

1 z10 x93 - Tip
1 xe3 - Top
P .- : =1o(z12 +T23+ -+ Tp1n)-
Tn—1,n
1

Then, K = indg" 1 is called the Kirillov representation of P,.

Theorem 2.3. K = ind{j’” ¥ is an irreducible representation of P,.
We refer the reader to Theorem 5.1 in [3] for a proof.

2.3. Multiplicity one Theorem for GL(n, F') over a finite field F. We con-
tinue with the notation of section 2.2.

Theorem 2.4. Let G = indg(z/)). The representation G of G is multiplicity free.
We refer to Theorem 6.1 in [3] for a proof.

2.4. Twisted Jacquet Module. In this section, we recall the character and the
dimension formula of the twisted Jacquet module of a representation .

Let G = GL(k,F) and P = MN be a parabolic subgroup of G. Let ¢ be a
character of N. For m € M, let ©)™ be the character of N defined by ¢™(n) =
P(mnm™1t). Let

V(N, ) = Spanc{m(n)v —¢(n)v |n € N,v € V}
and
My, = {m € M | 4™ (n) = (n),¥n € N}.
Clearly, M, is a subgroup of M and it is easy to see that V' (N, ) is an My-invariant

subspace of V. Hence, we get a representation (wy ., V/V(N,v)) of M,. We call
3



(7N, V/V(N,v)) the twisted Jacquet module of 7 with respect to . We write
Op,y for the character of my .

Proposition 2.5. Let (m,V) be a representation of GL(k, F') and ©, be the char-
acter of m. We have

O (m) = ﬁ 3" 0 (mn)i(n).

nenN

We refer the reader to Proposition 2.3 in [2] for a proof.

Remark 2.6. Taking m = 1, we get the dimension of 7y 4. To be precise, we have

dime(mn ) = ﬁ Z O (n)i(n).

nenN

2.5. ¢-Hypergeometric Identity. In this section, we record a certain g-identity
from [5] which we use in calculating the dimension of the twisted Jacquet module.
Before we state it, we set up some notation. Let M(n,m,r, q) be the set of all n. x m
matrices of rank r over the finite field F' of order ¢ and (a; q),, be the ¢-Pochhammer
symbol defined by

n—1

(a:q)n = [J (1 = aq')-

i=0
Proposition 2.7. Let a be an integer greater than or equal to 2n. Then

2

nz (q7 q)afn
> M(n,n,7,9)(¢; Q)ar = ¢ @ Do
>0 q;49)a—2n

We refer the reader to Lemma 2.1 in [5] for a proof of the above proposition in
a more general set up.
3. DIMENSION OF THE TWISTED JACQUET MODULE

Let m = my be an irreducible cuspidal representation of G corresponding to the
regular character 6 of Fy, and Oy be its character. In this section, we calculate the
dimension of 7y 4, , Where

10 - 0
A:

Throughout, we write M(n, m,r,q) denote the set of n x m matrices of rank r
over the finite field F' of cardinality q. For a € F and 0 < r < n, consider the
subset Y,;", of M(n, I) given by

Y. ={X € M(n, F) | Rank(X) = r, Tr(AX) = a}.
Lemma 3.1. We have

[ M(n,n,7,q)| = ¢"| M(n,n = 1,r.0)| + (¢" = ¢"~H)[M(n,n — 1,7 — 1,q)|.

Proof. Let S = ¢"|M(n,n — 1,7,¢)| + (¢" — ¢""H)|M(n,n — 1,r — 1,q)|. Tt is well
known that
") — )

(¢" —q7)




Thus, we have

1 (" — qﬂ ¢ Ty = ) = )
1:[ (q" —qf) T )jl:lo (q" —¢7t1)
" —q" (" —¢" ¢ -1

- n 1 |M(7’L,’I’L,T q)‘ + (qn qrfl)(qn 1)|M(n’n r Q)|

= |M(n,n,r,q)|

Lemma 3.2. Letr € {1,2,3,...,n} and o, € F*. Then we have
PSS G

Proof. Consider the map ¢ : Y, — Yf,r given by

$(X) = a ' BX.

Suppose that ¢(X) = ¢(Y). Since a~!3 # 0, it follows that ¢ is injective. For Y €
V2. let X = af~'Y. Clearly, we have Tr(AX) = a and Rank(X) = Rank(Y) = r
Thus ¢ is surjective and hence the result.

Lemma 3.3.
Yool = a7 IM(n,n, 7, q)|[+(¢"—¢" ) M(n—1,n-1,7,¢)|+(¢" > ~¢" ") M(n—~1,n~1,r~1,q)|.
Proof. Let B = {ey, €a,...,e,} be a basis of F" over F' and X €Y, . Then,

where w is an 1 X (n — 1) row vector, v is an (n — 1) x 1 column vector and Y is an
(n —1) x (n — 1) block matrix. We also write

?} = ['Ul V2 Un—l}

where v; is an n x 1 column vector for 1 <7 <n —1.

Let V be the n—1 dimensional hyperplane spanned by the vectors {e, €3, ..., e, }.

It is easy to see that

qﬂ € V. We let W be the space spanned by the vectors

{v1,v2,...,v,_1}. Since X € Y,

n,r?

Bﬂ:[vl vy e Uped]

has only two possibilities, either  or r —1. We consider both these cases separately.

the rank of the n x (n — 1) matrix

Case 1) Suppose that

Rank ( Bﬁ}) = Rank([vl Vg - Un—l]) -
5



Case 2)

Then dim W = r. It follows that, B} € W and hence Lﬂ € VNW. There-
fore, the number of choices for [vl vy - vn,l] is [M(n,n—1,7,9)|.

If w =0, then
W CV.

Hence, VNW = W and dim(VNW) = dim W = r. Since Lﬂ e VNW, the
number of possibilities of LOJ will be ¢". Also, the total number of matrices
Eﬂ with rank r and w =01is |[M(n—1,n—1,r,q)|.

If w # 0, we have W & V. Therefore,
dim(WNV)=dmV +dim W — dim(V + W)
=n—14r—n=r—1.

Since B} € VN W, the number of possibilities of B} will be ¢"~!. The

?} with rank 7 and w # 0, is

number of matrices {

‘M(n/n*lvraq)‘ - |M(n717n7137’5Q)|'

Suppose that

Rank({}u@):}{ank([vl Vg - vn_l]):r—l.

Then dimW = r — 1. Therefore, v ¢ W and hence B} € VAW. Also,we

w} with rank r — 1 is | M(n,n —

have that the total number of matrices {Y

1,7'— 1aq)|

If w=0, then W C V. Therefore, VNW = W and dim(V N W) =
dimW = r — 1. Since {2} € VAW, the number of possibilities of B} will

w| .
Y} with rank

be ¢"~! —¢"~'. Furthermore, The total number of matrices {
r—landw=0is |[M(n—1,n—1,r—1,q)|
If w # 0, then W V. Therefore,
dim(WNV)=dimV +dim W — dim(V + W)
=n—14+r—1-n=r—2.
Since v € V\W, the number of possibilities of {S} will be ¢" ' —¢"~2. The

total number of matrices in this case will be | M(n,n—1,r—1,¢)| — | M(n—
1L,n—1,r—1,q)|.

Using Lemma 3.1, and the above computations, we have
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|Y73r| _ qr|M(n_ 1,n— 1,r,q)| +qT_1(|M(n,ﬂ— 177",Q)| - |M(n_ 1,n— 17T7Q)|)
—+ (qnil —qr71)|M(TL— 1771— 17T_ 17Q)‘
+ (qn—l —qT_2)(|M(n,n— 1’71 — ]_,q)| — |M(n— ].777/_ 177' - 17Q)|)

q7 1‘M(TL n— 1 T, q)|+( nt _qT_2)|M<nan_ 17T_17Q)|
+( T 1)|M(’ﬂ,71 n— 17T7Q)|
( - T 1_qn 1+q7‘ 2)‘M(n_17n_1ar_17Q)|

+

=q¢" ' M(n,n—1,79)|+ (""" —¢ )| Mn,n-1,r—1,q)
+(@" —¢" HIMn-1n-1rq¢|+ (@ ?—¢ HMn-1n-1r—17)

= ¢ [ M(n,n,7,q)| + (¢" = ¢" ) M(n —1,n— 1,r,q)]
+ ("= HIMn—-1,n— 1,7 —1,q)|.
O
Lemma 3.4. We have
Yol =a [ M(n,n,r, )l ¢ M(n—1,n—1,7,q)[+¢" | M(n—1,n~1,r~1,9)|.
Proof. Using Lemma 3.2, we have
Yool + (@ = DY, | = |M(n,n,7,q)|.
Thus we get,
M(n,n,r,q)| = [V,
= .

Yol

_ M(nvnvrv q)| B q71|M(n,n,r, q)‘
qg—1
(@ = HIMn—1,n—1rq)|+ (¢ *—¢ HIMn-1,n—1,7—1,9)]
qg—1

= qil‘M(’NJ?’I’L’T’q” _qT71|M(n_ 1,7’l— 17T7Q)| +qT72|M(n_ 1771— 17T_ laq)|

O
Lemma 3.5. We have
Y2 =Y, =g Mn—1,n—1rq|—q ' |Mn-1,n-1r-1,)|
Proof. Follows from Lemma 3.3 and Lemma 3.4. (]

Lemma 3.6. Letr €{0,1,2,...,n} and X € M(n,n,r,q). We have
(-D)(¢;9)2n—1, ifr=0
q X D (~D(¢:@)2n—2, ifr=1
O = .
1 .
()@ @n-1, ifr=mn
Proof. The proof follows from Theorem 2.2 above and rewriting the character values
using the ¢g-Pochhammer symbol. (]

O =



Theorem 3.7. Let 0 be a regular character of F3, and m = mg be an irreducible
cuspidal representation of GL(2n, F). We have

dime(mn,p,) = (@ — 1D =1 ("' = 1)* = (g;0)7 1.

Proof. It is easy to see that the dimension of 7wy 4, is given by

dime(mys) = =z > e[y 7)) WEAD.

XeM(n,F)

Clearly, we have M(n, F) = U < U Yfm). Using this, we see that
r=0 \a€cF

dimc(wm):q}ﬁi > 69({(1) ﬂ)m

r=0 XeYT‘ZT
acF
1 &
= qnz Z(_l)(Q;q)anlf?” (|Y’l’?,1“| - |Ynl,r|)
=0
1 0
= T2 [(Q;Q)2n71q IM(n — 1,7 —1,0,q)|

n

+) (@ D2m-1-(q" IM(n— L,n—1,7,q)) —¢" " M(n— 1,n — 1,7 — 1,q)|)]

r=1
1 n—1
= > @ (G @)2n-1-r — (G Q2n-2-4) M(n = 1,n = 1,7,9)]
r=0
1 n—1
= > @ M(n = 1,0 —1,7,9)| (¢ Q)2n—2-+
r=0

n—1
1
= q('nfl)2 Z ‘M(n - 1’ n— 1,T, Q)| (qa q)2n—2—7“
r=0

= (g:9)%_;.
O

Remark 3.8. Suppose that B = Awy. It is easy to see that Op y, ({7781 72 }) =
2

ON s ({wowélwo 7732} ) Thus we have that dimc (7, ) = dime(TN,yp)-

4. MAIN THEOREM

In this section, we prove the main result of this paper. Before we continue, we
set up some notation and record a few preliminary results that we need. Let G =
GL(2n, F') and P be the maximal parabolic subgroup of G with Levi decomposition
P = MN, where M ~ GL(n, F) x GL(n,F) and N ~ M(n, F). We write F,, for
the unique field extension of F' of degree n. Let 1y be a fixed non-trivial additive
character of F'. Let

0 0 1

0 0 0
A= :

0 0 0



Let 94 : N — C* be the character of N given by

A <B ﬂ) = 1)o(Tr(AX)).

Let Hy = M x Ms where M, is the Mirabolic subgroup of GL(n, F) and My =
woM; Twy=!. Let U be the subgroup of unipotent matrices in GL(2n, F). Let
Us = HyNU. Clearly, we have Uy ~ Uy x Us where U; and Us are the upper
triangular unipotent subgroups of GL(n, F'). For k = 1,2, let py : Uy — C* be the

non-degenerate character of Uy given by

1 12 T13 NN Tin
1 23 ... Ton
j17 o : =Yo(T12 + T2z + -+ T(n1)n)-
L(n—1)n
1

Let p: Uy — C* be the character of Uy given by
() = pa (ur)pz(uz)
where u = {ul } .
Uz
Lemma 4.1. Let My, = {m € M | ¢} (n) = a(n),Yn € N}. Then we have
C =z

M, = y|[¢€FCDEGL —1,F)a,y € F"7!
D

o

Proof. Let g = {91 g } € M. Then g € My, if and only if Ag; = g2 A. It follows
2
: . C T a
that g € M,, if and only if g; = {0 J and gy — L) %} .

Lemma 4.2. Let Z be the center of G = GL(2n, F). Let Ha be a subgroup of G
as above. Then,

Md)A ~ 7 x HA.
Proof. Trivial. O

Lemma 4.3. Let p1 = ind%1 11 and py = ind%2 wo. Consider the representation
(p, V) of My, given by

p="0lpx @ind{* = 6] px @ (p1 @ pa).
Then (p,V) is an irreducible representation of My, .

Proof. Since p; is the Kirillov representation of the Mirabolic subgroup M; of
GL(n, F'), we have that p; is irreducible (see Theorem 2.3). In a similar way, we
can see that ps is also irreducible. Hence the result. O

Lemma 4.4. Let Py, = My,N. Consider the map p: Py, — GL(V) given by

p(p) = p(mn) = a(mnm™")p(m),

where m € My,,n € N. Then (p,V) is a representation of Py, .
9



Proof. Let p1 = mini,p2 = mang € Py,. Then, we have
p(p1p2) = p(minimans)
= p(mima(ma ™ n1ma)ns)
= ¢A(m1m2(mgflnlmgng)mgflmfl)p(mlmg)
= Ya(n1(manamy ")) p(myms)
= a(n1)a(manams =) p(ma)p(ms)
= tha(mingmi ") p(m1)va(mangmse ™) p(my)

= p(p1)p(p2)-

Lemma 4.5. Let (p,V) be the representation of Py, given by
p(p) = pmn) = Ya(mnm™")p(m),
where m € My,,,n € N. Then, (p,V) is irreducible.

Proof. Let W be a non-trivial Py ,-invariant subspace of V. For w € W,p € Py,,
we have

pp)w = Ya(mnm™)p(m)w € W.

Therefore p(m)w € W, for all m € My,, w € W. Since p is irreducible (see
Lemma 4.3), the result follows. O

Lemma 4.6. Consider the representation p of Py,. We have
Plu=1a®plu,.
Proof. Clearly we have U = U4 N. Hence for u = zn € U, we have
p(u) = Ya(zna™")p(x) = Ya(n)p(z).
O

Lemma 4.7. Let p = O|px ® indgj 1 be the representation of My, and p be the
corresponding representation of Py,. For any z € Z, we have

wpl(2) = w,(2) = 0(2).
Proof. For z € Z, we have

It follows that w;(z) = w,(2) = 6(2). O

Lemma 4.8. Let x : F* — C* be a character of F*. Consider the representation
(p,V) of Py, defined above. Let oy : Py, — GL(V) be the map

ox(p) = ox(zhn) = x(2)p(hn),

where z € Z,h € Ha,n € N. Then o, is an irreducible representation of Py, .
10



Proof. It is easy to see that o, is a representation of Py,. Let W be a non-trivial
subspace of V' invariant under Py, and let w # 0 € W. We have

oy(zhn)w = x(2)p(hn)w € W.
Therefore,
p(zhn)w = p(z)p(hn)w = w;(z)p(hn)w € W.
Since p is irreducible, it follows that V = W and hence the result. ]
Lemma 4.9. Let x1,x2 € FX such that X1 # X2- Then,
Oxr ¥ Oxs-

Proof. Let 29 € Z such that x1(20) # x2(20). Let X0, ; Xo,, be the characters of
oy, and o,,. Suppose that o,, ~ o,,. We have

Xoy, (20) = Tr(oy, (20))
= X1(20) deg(p)
= Xoy, (20)
= Tr(oy,(20))
= x2(20) deg(p).

The result follows. U
Lemma 4.10. For x € f;, we have
Homp, (oys indllj“ ) # 0.

Proof. Using Frobenius Reciprocity, we have

. P

Homp,  (0y, ind;,"* v) = Homy (o |, ¥).
Thus it is enough to show that Homy (o |17, %) # 0. For u € U, we have
oxlu(u) = oy (u) = x(1)p(u) = plu(u).

Therefore,

Homy (o |v, %) = Homy (4lv, )

= HomU(wA (9 p|UA7,(/}>

= Homy | ¥4 ® @ indSUf‘1 UnsnUa 15,1
SEUA\HA/Ua

= Homy (¢4 @ p, ) ® @ Homys (¢A X indsUflUAsﬂUA 1, w)
1#£s€UaA\HA/Ua

= Homy (¢, ¢) @ @ Homy (¢A ® indnglUAsmUA uw’, 1/))
1#£s€UaA\HA/Ua

£ 0.

11



Lemma 4.11. Let x € FX and oy be the irreducible representation of Py,. Then

. Py,
ind;;"* ¢ = @ Oy-
XEFX

Proof. The result clearly follows from a simple application of Lemma 4.9 and
Lemma 4.10, and computing the degree of indgw*‘ (v). To be precise, suppose
that
ind** () = (P dyoy) ® do
ZL’EF;
where dy > 1,d > 0 and o is some representation of Py,. By degree comparison,
we have that

deg ( P dyoy) = Z dy, deg(ay) Z dy, deg(p
Xef; )(GF>< X€F><
Clearly
. P
> dydeg(p) > (g — 1) deg(p) = deg(ind;** (¥)),
xeﬁ
On the other hand, we have
deg( @ dyoy) + ddeg(o) = deg(ind?’f‘ (¥)).
Xef;
It follows that
d=0,d, =1,Vx € F*.
Hence the result. O
Lemma 4.12. Let m =ah € My, , where a € Z and h € Hy. Then,
eNﬂl}A (m) = e(a)@NﬂﬁA (h)
Proof. We have
ONpa(m) = @N a(ah)

Z @9 ahn wA( )

‘N| neN
‘N|nezNTr m(ahn))a(n)
Tr( 7 (hn)
=wn(a ZTr (hn))a(n)
71€N
= ww(a)@N,wA (h)

where w, is the central character of w. Explicitly, we have
Op(a) = Tr(r(a)) = Tr(wr(a)) = wx(a) dim(mw).
Using Theorem 2.2, it is easy to see that
O¢(a) = 0(a) dim().
Thus, we have w;(a) = 6(a) and the result follows. O
Lemma 4.13. Let x # 6 € FX. Then

HOI’Ilpr (ﬂ'lpr,O'X) =0.
12



Proof. Tt is enough to show that dimc Homp, (77|pr ,0y) = 0. Clearly, we have

dim@ Hompr (’/T‘pr s O'X) = <X7T‘P¢’A s XUX>

= Z X (zhn)xes, (zhn)

zhn€Py ,

Yo > wn(@xa(hn)x(@)xp(hn)

hneHaN zeZ

Z Z X‘fr hn)XP (hn)

hneHAN zeZ

D 0X(E) Y xalhm)xp(hn)

z€Z hneH s N

=(0.x) D> xa(hm)xs(hn)
hneHaN

=0

It follows that

Homp, (7|p,, ,0x) =0,Yx € F*,x # 0.

Lemma 4.14. Consider the restriction 0|px of the reqular character 8. Then
o9 =p
as Py, representations.

Proof. Using Lemma 4.7 we have w;(z) = 6(z). Thus for p = zhn € Py, , we have

og(zhn) = 0(z)p(hn)
= wp(2)p(hn)
(zhn).

Ez

4.1. Proof of the Main Theorem. For the sake of completeness, we recall the
statement below.

Theorem 4.15. Let 0 be a regular character of Fy, and m = mg be an irreducible
cuspidal representation of G. Then

T‘-Nﬂl)A ~ (9|F>< ® iIldlrU{x;4 12

as My, modules.
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Proof. Using transitivity of induction and Lemma 4.11, we have that

Home (, indf} ) = Home(r,ind§, (ind;** ¢))

Homg(w,indg“( @ oy))

xeﬁ
= @ Homg(ﬂ,indg“ Oy)
XEE;
= @ HomeA(W|PwA70—X)
xeﬁ

= Homp, (7|p,,,00) ® @ Homp, (7|p,, 0x)
0#)(6?
= HOHlpr (7T|PwA ) ﬁ)
Hence,
Homg (7, ind$ (v)) = Homp, (7|p,,,p) ~ Homg(m, indgm p) ~ Hompr, (Tnpa:P)-
Using the multiplicity one theorem for GL(n) (see Theorem 2.4), we conclude that
dimc Hompy, (TN, p) =1
and it follows that

TNpa =P
as My, representations. O
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