
ON A TWISTED JACQUET MODULE OF GL(2n) OVER A
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Abstract. Let F be a finite field and G = GL(2n, F ). In this paper, we
explicitly describe a certain twisted Jacquet module of an irreducible cuspidal

representation of G.

1. Introduction

Let F be a finite field and G = GL(n, F ). Let P be a parabolic subgroup of
G with Levi decomposition P = MN . Let π be any irreducible finite dimensional
complex representation of G and ψ be an irreducible representation of N . Let πN,ψ
be the sum of all irreducible representations of N inside π, on which π acts via the
character ψ. It is easy to see that πN,ψ is a representation of the subgroup Mψ

of M , consisting of those elements in M which leave the isomorphism class of ψ
invariant under the inner conjugation action of M on N . The space πN,ψ is called
the twisted Jacquet module of the representation π. It is an interesting question
to understand for which irreducible representations π, the twisted Jacquet module
πN,ψ is non-zero and to understand its structure as a module for Mψ.

In [2],[1], inspired by the work of Prasad in [6], we studied the structure of
a certain twisted Jacquet module of a cuspidal representation of GL(6, F ) and
GL(4, F ). Based on our calculations, we had conjectured the structure of the mod-
ule for GL(2n, F ) (see Section 1 in [1]). For a more detailed introduction and the
motivation to study the problem, we refer the reader to Section 1 in [2].

Before we state our result, we set up some notation. Let F be a finite field and
Fn be the unique field extension of F of degree n. Let G = GL(2n, F ) and P =MN
be the standard maximal parabolic subgroup of G corresponding to the partition
(n, n). We have, M ≃ GL(n, F ) × GL(n, F ) and N ≃ M(n, F ). We let π = πθ to
be an irreducible cuspidal representation of G associated to the regular character
θ. Let ψ be any character of N ≃ M(n, F ) and ψ0 be a fixed non-trivial character
of F . We let

A =


1 0 · · · 0
0 0 · · · 0
...

...
. . .

...
0 0 · · · 0

 ∈ M(n, F )

Let ψA : N → C× be the character given by

ψA

Åï
1 X
0 1

òã
= ψ0(Tr(AX)).
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Let HA = M1 ×M2 where M1 is the Mirabolic subgroup of GL(n, F ) and M2 =
w0M

⊤
1 w

−1
0 where

w0 =

 0 . . . 1
... . .

. ...
1 . . . 0


Let U be the subgroup of unipotent matrices in GL(2n, F ) and UA = U ∩ HA.
Then, we get UA ≃ U1 × U2 where U1 and U2 are the upper triangular unipotent
subgroups of GL(n, F ). For k = 1, 2, let µk : Uk → C× be the non-degenerate
character of Uk given by

µk




1 x12 x13 · · · x1,n

1 x23 · · · x2,n

1
. . .

...
. . . x(n−1),n

1



 = ψ0

(
x12 + x23 + · · ·+ x(n−1),n

)
.

Let µ : UA → C× be the character of UA given by

µ(u) = µ1 (u1)µ2 (u2)

where u =

ï
u1 0
0 u2

ò
∈ UA.

Theorem 1.1. Let θ be a regular character of F×
2nand π = πθ be an irreducible

cuspidal representation of G. Then

πN,ψA ≃ θ|F× ⊗ indHAUA µ

as MψA modules.

In the case of GL(4, F ) and GL(6, F ), we did explicit character computations
to establish the the structure of the module. However, to imitate these character
computations for GL(2n, F ) will be tedious. In this paper, we prove our main the-
orem by using the ”multiplicity one theorem” for GL(2n, F ) and completely avoid
character calculations.

Currently, we are investigating the structure of πN,ψA in the case when F is a
p-adic field. We hope to write up the details at a later time.

2. Preliminaries

In this section, we mention some preliminary results that we need in our paper.

2.1. Character of a Cuspidal Representation. Let F be the finite field of order
q and G = GL(m,F ). Let Fm be the unique field extension of F of degree m. A
character θ of F×

m is called a “regular” character, if under the action of the Galois
group of Fm over F , θ gives rise to m distinct characters of F×

m . It is a well known
fact that the cuspidal representations of GL(m,F ) are parametrized by the regular
characters of F×

m . To avoid introducing more notation, we mention below only the
relevant statements on computing the character values that we have used. We refer
the reader to Section 6 in [4] for more precise statements on computing character
values.

Theorem 2.1. Let θ be a regular character of F×
m . Let π = πθ be an irreducible

cuspidal representation of GL(m,F ) associated to θ. Let Θθ be its character. If
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g ∈ GL(m,F ) is such that the characteristic polynomial of g is not a power of a
polynomial irreducible over F . Then, we have

Θθ(g) = 0.

Theorem 2.2. Let θ be a regular character of F×
m . Let π = πθ be an irreducible

cuspidal representation of GL(m,F ) associated to θ. Let Θθ be its character. Sup-
pose that g = s.u is the Jordan decomposition of an element g in GL(m,F ). If
Θθ(g) ̸= 0, then the semisimple element s must come from F×

m . Suppose that s
comes from F×

m . Let z be an eigenvalue of s in Fm and let t be the dimension of
the kernel of g − z over Fm. Then

Θθ(g) = (−1)m−1

ï d−1∑
α=0

θ(zq
α

)

ò
(1− qd)(1− (qd)2) · · · (1− (qd)t−1).

where qd is the cardinality of the field generated by z over F , and the summation
is over the distinct Galois conjugates of z.

See Theorem 2 in [6] for this version.

2.2. Kirillov Representation. Let F be a finite field with q elements and G =
GL(n, F ). Let Pn be the Mirabolic subgroup of G and let U be the subgroup of
unipotent matrices of G. In this section, we recall the Kirillov representation of
the Mirabolic subgroup Pn of G. Let ψ0 be a non-trivial character of F and let
ψ : U → C× be the non-degenerate character of U given by

ψ




1 x12 x13 · · · x1n

1 x23 · · · x2n

1 · · ·
...

. . . xn−1,n

1



 = ψ0(x1,2 + x2,3 + · · ·+ xn−1,n).

Then, K = indPnU ψ is called the Kirillov representation of Pn.

Theorem 2.3. K = indPnU ψ is an irreducible representation of Pn.

We refer the reader to Theorem 5.1 in [3] for a proof.

2.3. Multiplicity one Theorem for GL(n, F ) over a finite field F . We con-
tinue with the notation of section 2.2.

Theorem 2.4. Let G = indGU (ψ). The representation G of G is multiplicity free.

We refer to Theorem 6.1 in [3] for a proof.

2.4. Twisted Jacquet Module. In this section, we recall the character and the
dimension formula of the twisted Jacquet module of a representation π.

Let G = GL(k, F ) and P = MN be a parabolic subgroup of G. Let ψ be a
character of N . For m ∈ M , let ψm be the character of N defined by ψm(n) =
ψ(mnm−1). Let

V (N,ψ) = SpanC{π(n)v − ψ(n)v | n ∈ N, v ∈ V }
and

Mψ = {m ∈M | ψm(n) = ψ(n),∀n ∈ N}.
Clearly,Mψ is a subgroup ofM and it is easy to see that V (N,ψ) is anMψ-invariant
subspace of V . Hence, we get a representation (πN,ψ, V/V (N,ψ)) of Mψ. We call
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(πN,ψ, V/V (N,ψ)) the twisted Jacquet module of π with respect to ψ. We write
ΘN,ψ for the character of πN,ψ.

Proposition 2.5. Let (π, V ) be a representation of GL(k, F ) and Θπ be the char-
acter of π. We have

ΘN,ψ(m) =
1

|N |
∑
n∈N

Θπ(mn)ψ(n).

We refer the reader to Proposition 2.3 in [2] for a proof.

Remark 2.6. Taking m = 1, we get the dimension of πN,ψ. To be precise, we have

dimC(πN,ψ) =
1

|N |
∑
n∈N

Θπ(n)ψ(n).

2.5. q-Hypergeometric Identity. In this section, we record a certain q-identity
from [5] which we use in calculating the dimension of the twisted Jacquet module.
Before we state it, we set up some notation. Let M(n,m, r, q) be the set of all n×m
matrices of rank r over the finite field F of order q and (a; q)n be the q-Pochhammer
symbol defined by

(a; q)n =

n−1∏
i=0

(1− aqi).

Proposition 2.7. Let a be an integer greater than or equal to 2n. Then

∑
r≥0

M(n, n, r, q)(q; q)a−r = qn
2 (q; q)2a−n
(q; q)a−2n

.

We refer the reader to Lemma 2.1 in [5] for a proof of the above proposition in
a more general set up.

3. Dimension of the Twisted Jacquet Module

Let π = πθ be an irreducible cuspidal representation of G corresponding to the
regular character θ of F×

2n and Θθ be its character. In this section, we calculate the
dimension of πN,ψA , where

A =


1 0 · · · 0
0 0 · · · 0
...

...
. . .

...
0 0 · · · 0

 .
Throughout, we write M(n,m, r, q) denote the set of n ×m matrices of rank r

over the finite field F of cardinality q. For α ∈ F and 0 ≤ r ≤ n, consider the
subset Y αn,r of M(n, F ) given by

Y αn,r = {X ∈ M(n, F ) | Rank(X) = r,Tr(AX) = α}.

Lemma 3.1. We have

|M(n, n, r, q)| = qr|M(n, n− 1, r, q)|+ (qn − qr−1)|M(n, n− 1, r − 1, q)|.

Proof. Let S = qr|M(n, n − 1, r, q)| + (qn − qr−1)|M(n, n − 1, r − 1, q)|. It is well
known that

|M(n,m, r, q)| =
r−1∏
j=0

(qn − qj)(qm − qj)

(qr − qj)
.
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Thus, we have

S = qr
r−1∏
j=0

(qn − qj)(qn−1 − qj)

(qr − qj)
+ (qn − qr−1)

r−2∏
j=0

(qn − qj)(qn−1 − qj)

(qr−1 − qj)

=

r−1∏
j=0

(qn − qj)(qn − qj+1)

(qr − qj)
+ (qn − qr−1)

r−2∏
j=0

(qn − qj)(qn − qj+1)

(qr − qj+1)

=
qn − qr

qn − 1
|M(n, n, r, q)|+ (qn − qr−1)(qr − 1)

(qn − qr−1)(qn − 1)
|M(n, n, r, q)|

= |M(n, n, r, q)|.

□

Lemma 3.2. Let r ∈ {1, 2, 3, . . . , n} and α, β ∈ F×. Then we have

|Y αn,r| = |Y βn,r|.

Proof. Consider the map ϕ : Y αn,r → Y βn,r given by

ϕ(X) = α−1βX.

Suppose that ϕ(X) = ϕ(Y ). Since α−1β ̸= 0, it follows that ϕ is injective. For Y ∈
Y βn,r, let X = αβ−1Y . Clearly, we have Tr(AX) = α and Rank(X) = Rank(Y ) = r.
Thus ϕ is surjective and hence the result. □

Lemma 3.3.

|Y 0
n,r| = q−1|M(n, n, r, q)|+(qr−qr−1)|M(n−1, n−1, r, q)|+(qr−2−qr−1)|M(n−1, n−1, r−1, q)|.

Proof. Let B = {e1, e2, . . . , en} be a basis of Fn over F and X ∈ Y 0
n,r. Then,

[X]B =

ï
0 w
v Y

ò
where w is an 1× (n− 1) row vector, v is an (n− 1)× 1 column vector and Y is an
(n− 1)× (n− 1) block matrix. We also writeï

w
Y

ò
=
[
v1 v2 · · · vn−1

]
where vi is an n× 1 column vector for 1 ≤ i ≤ n− 1.

Let V be the n−1 dimensional hyperplane spanned by the vectors {e2, e3, . . . , en}.

It is easy to see that

ï
0
v

ò
∈ V . We let W be the space spanned by the vectors

{v1, v2, . . . , vn−1}. Since X ∈ Y 0
n,r, the rank of the n× (n− 1) matrixï

w
Y

ò
=
[
v1 v2 · · · vn−1

]
has only two possibilities, either r or r−1. We consider both these cases separately.

Case 1) Suppose that

Rank

Åï
w
Y

òã
= Rank(

[
v1 v2 · · · vn−1

]
) = r.
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Then dimW = r. It follows that,

ï
0
v

ò
∈W and hence

ï
0
v

ò
∈ V ∩W . There-

fore, the number of choices for
[
v1 v2 · · · vn−1

]
is |M(n, n− 1, r, q)|.

a) If w = 0, then

W ⊆ V.

Hence, V ∩W =W and dim(V ∩W ) = dimW = r. Since

ï
0
v

ò
∈ V ∩W , the

number of possibilities of

ï
0
v

ò
will be qr. Also, the total number of matricesï

w
Y

ò
with rank r and w = 0 is |M(n− 1, n− 1, r, q)|.

b) If w ̸= 0, we have W ̸⊆ V . Therefore,

dim(W ∩ V ) = dimV + dimW − dim(V +W )

= n− 1 + r − n = r − 1.

Since

ï
0
v

ò
∈ V ∩W , the number of possibilities of

ï
0
v

ò
will be qr−1. The

number of matrices

ï
w
Y

ò
with rank r and w ̸= 0, is

|M(n, n− 1, r, q)| − |M(n− 1, n− 1, r, q)|.

Case 2) Suppose that

Rank

Åï
w
Y

òã
= Rank(

[
v1 v2 · · · vn−1

]
) = r − 1.

Then dimW = r − 1. Therefore, v ̸∈ W and hence

ï
0
v

ò
∈ V \W . Also,we

have that the total number of matrices

ï
w
Y

ò
with rank r − 1 is |M(n, n −

1, r − 1, q)|.

a) If w = 0, then W ⊆ V . Therefore, V ∩ W = W and dim(V ∩ W ) =

dimW = r − 1. Since

ï
0
v

ò
∈ V \W , the number of possibilities of

ï
0
v

ò
will

be qn−1− qr−1. Furthermore, The total number of matrices

ï
w
Y

ò
with rank

r − 1 and w = 0 is |M(n− 1, n− 1, r − 1, q)|.

b) If w ̸= 0, then W ̸⊆ V . Therefore,

dim(W ∩ V ) = dimV + dimW − dim(V +W )

= n− 1 + r − 1− n = r − 2.

Since v ∈ V \W , the number of possibilities of

ï
0
v

ò
will be qn−1− qr−2. The

total number of matrices in this case will be |M(n, n−1, r−1, q)|− |M(n−
1, n− 1, r − 1, q)|.

Using Lemma 3.1, and the above computations, we have
6



|Y 0
n,r| = qr|M(n− 1, n− 1, r, q)|+ qr−1(|M(n, n− 1, r, q)| − |M(n− 1, n− 1, r, q)|)

+ (qn−1 − qr−1)|M(n− 1, n− 1, r − 1, q)|
+ (qn−1 − qr−2)(|M(n, n− 1, r − 1, q)| − |M(n− 1, n− 1, r − 1, q)|)

= qr−1|M(n, n− 1, r, q)|+ (qn−1 − qr−2)|M(n, n− 1, r − 1, q)|
+ (qr − qr−1)|M(n− 1, n− 1, r, q)|
+ (qn−1 − qr−1 − qn−1 + qr−2)|M(n− 1, n− 1, r − 1, q)|

= qr−1|M(n, n− 1, r, q)|+ (qn−1 − qr−2)|M(n, n− 1, r − 1, q)|
+ (qr − qr−1)|M(n− 1, n− 1, r, q)|+ (qr−2 − qr−1)|M(n− 1, n− 1, r − 1, q)|

= q−1|M(n, n, r, q)|+ (qr − qr−1)|M(n− 1, n− 1, r, q)|
+ (qr−2 − qr−1)|M(n− 1, n− 1, r − 1, q)|.

□

Lemma 3.4. We have

|Y 1
n,r| = q−1|M(n, n, r, q)|−qr−1|M(n−1, n−1, r, q)|+qr−2|M(n−1, n−1, r−1, q)|.

Proof. Using Lemma 3.2, we have

|Y 0
n,r|+ (q − 1)|Y 1

n,r| = |M(n, n, r, q)|.
Thus we get,

|Y 1
n,r| =

M(n, n, r, q)| − |Y 0
n,r|

q − 1

=
M(n, n, r, q)| − q−1|M(n, n, r, q)|

q − 1

− (qr − qr−1)|M(n− 1, n− 1, r, q)|+ (qr−2 − qr−1)|M(n− 1, n− 1, r − 1, q)|
q − 1

= q−1|M(n, n, r, q)| − qr−1|M(n− 1, n− 1, r, q)|+ qr−2|M(n− 1, n− 1, r − 1, q)|.
□

Lemma 3.5. We have

|Y 0
n,r| − |Y 1

n,r| = qr|M(n− 1, n− 1, r, q)| − qr−1|M(n− 1, n− 1, r − 1, q)|.
Proof. Follows from Lemma 3.3 and Lemma 3.4. □

Lemma 3.6. Let r ∈ {0, 1, 2, . . . , n} and X ∈ M(n, n, r, q). We have

Θθ

Åï
1 X
0 1

òã
=


(−1)(q; q)2n−1, if r = 0

(−1)(q; q)2n−2, if r = 1
...

(−1)(q; q)n−1, if r = n

Proof. The proof follows from Theorem 2.2 above and rewriting the character values
using the q-Pochhammer symbol. □
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Theorem 3.7. Let θ be a regular character of F×
2n and π = πθ be an irreducible

cuspidal representation of GL(2n, F ). We have

dimC(πN,ψA) = (q − 1)2(q2 − 1)2 · · · (qn−1 − 1)2 = (q; q)2n−1.

Proof. It is easy to see that the dimension of πN,ψA is given by

dimC(πN,ψA) =
1

qn2

∑
X∈M(n,F )

Θθ

Åï
1 X
0 1

òã
ψ0(Tr(AX)).

Clearly, we have M(n, F ) =

n⋃
r=0

(⋃
α∈F

Y αn,r

)
. Using this, we see that

dimC(πN,ψA) =
1

qn2

n∑
r=0

∑
X∈Y αn,r
α∈F

Θθ

Åï
1 X
0 1

òã
ψ0(α)

=
1

qn2

n∑
r=0

(−1)(q; q)2n−1−r
(
|Y 0
n,r| − |Y 1

n,r|
)

= − 1

qn2

[
(q; q)2n−1q

0 |M(n− 1, n− 1, 0, q)|

+

n∑
r=1

(q; q)2n−1−r(q
r |M(n− 1, n− 1, r, q)| − qr−1 |M(n− 1, n− 1, r − 1, q)|)

]
= − 1

qn2

n−1∑
r=0

qr ((q; q)2n−1−r − (q; q)2n−2−r) |M(n− 1, n− 1, r, q)|

=
1

qn2

n−1∑
r=0

q2n−1 |M(n− 1, n− 1, r, q)| (q; q)2n−2−r

=
1

q(n−1)2

n−1∑
r=0

|M(n− 1, n− 1, r, q)| (q; q)2n−2−r

= (q; q)2n−1.

□

Remark 3.8. Suppose that B = Aw0. It is easy to see that ΘN,ψA

Åï
m1 0
0 m2

òã
=

ΘN,ψB

Åï
w0m1w0 0

0 m2

òã
. Thus we have that dimC(πN,ψA) = dimC(πN,ψB ).

4. Main Theorem

In this section, we prove the main result of this paper. Before we continue, we
set up some notation and record a few preliminary results that we need. Let G =
GL(2n, F ) and P be the maximal parabolic subgroup of G with Levi decomposition
P = MN , where M ≃ GL(n, F ) × GL(n, F ) and N ≃ M(n, F ). We write Fn for
the unique field extension of F of degree n. Let ψ0 be a fixed non-trivial additive
character of F . Let

A =


0 0 · · · 1
0 0 · · · 0
...

...
. . .

...
0 0 · · · 0

 .
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Let ψA : N → C× be the character of N given by

ψA

Åï
1 X
0 1

òã
= ψ0(Tr(AX)).

Let HA = M1 ×M2 where M1 is the Mirabolic subgroup of GL(n, F ) and M2 =

w0M1
⊤w0

−1. Let U be the subgroup of unipotent matrices in GL(2n, F ). Let
UA = HA ∩ U . Clearly, we have UA ≃ U1 × U2 where U1 and U2 are the upper
triangular unipotent subgroups of GL(n, F ). For k = 1, 2, let µk : Uk → C× be the
non-degenerate character of Uk given by

µk




1 x12 x13 . . . x1n

1 x23 . . . x2n

1
. . .

...
. . . x(n−1)n

1



 = ψ0(x12 + x23 + · · ·+ x(n−1)n).

Let µ : UA → C× be the character of UA given by

µ(u) = µ1(u1)µ2(u2)

where u =

ï
u1

u2

ò
.

Lemma 4.1. Let MψA = {m ∈M | ψmA (n) = ψA(n),∀n ∈ N}. Then we have

MψA =



C x
0 a

a y
0 D


∣∣∣∣∣∣∣∣ a ∈ F×, C,D ∈ GL(n− 1, F ), x, y ∈ Fn−1

 .

Proof. Let g =

ï
g1

g2

ò
∈M . Then g ∈MψA if and only if Ag1 = g2A. It follows

that g ∈MψA if and only if g1 =

ï
C x
0 a

ò
and g2 =

ï
a y
0 D

ò
. □

Lemma 4.2. Let Z be the center of G = GL(2n, F ). Let HA be a subgroup of G
as above. Then,

MψA ≃ Z ×HA.

Proof. Trivial. □

Lemma 4.3. Let ρ1 = indM1

U1
µ1 and ρ2 = indM2

U2
µ2. Consider the representation

(ρ, V ) of MψA given by

ρ = θ|F× ⊗ indHAUA µ = θ|F× ⊗ (ρ1 ⊗ ρ2).

Then (ρ, V ) is an irreducible representation of MψA .

Proof. Since ρ1 is the Kirillov representation of the Mirabolic subgroup M1 of
GL(n, F ), we have that ρ1 is irreducible (see Theorem 2.3). In a similar way, we
can see that ρ2 is also irreducible. Hence the result. □

Lemma 4.4. Let PψA =MψAN . Consider the map ρ̃ : PψA → GL(V ) given by

ρ̃(p) = ρ̃(mn) = ψA(mnm
−1)ρ(m),

where m ∈MψA , n ∈ N . Then (ρ̃, V ) is a representation of PψA .
9



Proof. Let p1 = m1n1, p2 = m2n2 ∈ PψA . Then, we have

ρ̃(p1p2) = ρ̃(m1n1m2n2)

= ρ̃(m1m2(m2
−1n1m2)n2)

= ψA(m1m2(m2
−1n1m2n2)m2

−1m1
−1)ρ(m1m2)

= ψA(n1(m2n2m2
−1))ρ(m1m2)

= ψA(n1)ψA(m2n2m2
−1)ρ(m1)ρ(m2)

= ψA(m1n1m1
−1)ρ(m1)ψA(m2n2m2

−1)ρ(m2)

= ρ̃(p1)ρ̃(p2).

□

Lemma 4.5. Let (ρ̃, V ) be the representation of PψA given by

ρ̃(p) = ρ̃(mn) = ψA(mnm
−1)ρ(m),

where m ∈MψA , n ∈ N . Then, (ρ̃, V ) is irreducible.

Proof. Let W be a non-trivial PψA -invariant subspace of V . For w ∈ W,p ∈ PψA ,
we have

ρ̃(p)w = ψA(mnm
−1)ρ(m)w ∈W.

Therefore ρ(m)w ∈ W , for all m ∈ MψA , w ∈ W . Since ρ is irreducible (see
Lemma 4.3), the result follows. □

Lemma 4.6. Consider the representation ρ̃ of PψA . We have

ρ̃|U = ψA ⊗ ρ|UA .

Proof. Clearly we have U = UAN . Hence for u = xn ∈ U , we have

ρ̃(u) = ψA(xnx
−1)ρ(x) = ψA(n)ρ(x).

□

Lemma 4.7. Let ρ = θ|F× ⊗ indHAUA µ be the representation of MψA and ρ̃ be the
corresponding representation of PψA . For any z ∈ Z, we have

ωρ̃(z) = ωρ(z) = θ(z).

Proof. For z ∈ Z, we have

χρ̃(z) = Tr(ρ̃(z))

= ωρ̃(z) deg(ρ)

= Tr(ρ(z))

= ωρ(z) deg(ρ)

= Tr(θ|F×(z)⊗ indHAUA µ(1))

= θ(z) deg(ρ)

It follows that ωρ̃(z) = ωρ(z) = θ(z). □

Lemma 4.8. Let χ : F× → C× be a character of F×. Consider the representation
(ρ̃, V ) of PψA defined above. Let σχ : PψA → GL(V ) be the map

σχ(p) = σχ(zhn) = χ(z)ρ̃(hn),

where z ∈ Z, h ∈ HA, n ∈ N . Then σχ is an irreducible representation of PψA .
10



Proof. It is easy to see that σχ is a representation of PψA . Let W be a non-trivial
subspace of V invariant under PψA and let w ̸= 0 ∈W . We have

σχ(zhn)w = χ(z)ρ̃(hn)w ∈W.

Therefore,

ρ̃(zhn)w = ρ̃(z)ρ̃(hn)w = ωρ̃(z)ρ̃(hn)w ∈W.

Since ρ̃ is irreducible, it follows that V =W and hence the result. □

Lemma 4.9. Let χ1, χ2 ∈ F̂× such that χ1 ̸= χ2. Then,

σχ1
̸≃ σχ2

.

Proof. Let z0 ∈ Z such that χ1(z0) ̸= χ2(z0). Let χσχ1
, χσχ2

be the characters of
σχ1 and σχ2 . Suppose that σχ1 ≃ σχ2 . We have

χσχ1
(z0) = Tr(σχ1(z0))

= χ1(z0) deg(ρ)

= χσχ2
(z0)

= Tr(σχ2
(z0))

= χ2(z0) deg(ρ).

The result follows. □

Lemma 4.10. For χ ∈ F̂×, we have

HomPψA
(σχ, ind

PψA
U ψ) ̸= 0.

Proof. Using Fröbenius Reciprocity, we have

HomPψA
(σχ, ind

PψA
U ψ) = HomU (σχ|U , ψ).

Thus it is enough to show that HomU (σχ|U , ψ) ̸= 0. For u ∈ U , we have

σχ|U (u) = σχ(u) = χ(1)ρ̃(u) = ρ̃|U (u).

Therefore,

HomU (σχ|U , ψ) = HomU (ρ̃|U , ψ)

= HomU (ψA ⊗ ρ|UA , ψ)

= HomU

Ñ
ψA ⊗

⊕
s∈UA\HA/UA

indUAs−1UAs∩UA µ
s, ψ

é
= HomU (ψA ⊗ µ, ψ)⊕

⊕
1̸=s∈UA\HA/UA

HomU

Ä
ψA ⊗ indUAs−1UAs∩UA µ

s, ψ
ä

= HomU (ψ,ψ)⊕
⊕

1̸=s∈UA\HA/UA

HomU

Ä
ψA ⊗ indUAs−1UAs∩UA µ

s, ψ
ä

̸= 0.

□
11



Lemma 4.11. Let χ ∈ F̂× and σχ be the irreducible representation of PψA . Then

ind
PψA
U ψ =

⊕
χ∈‘F×

σχ.

Proof. The result clearly follows from a simple application of Lemma 4.9 and

Lemma 4.10, and computing the degree of ind
PψA
U (ψ). To be precise, suppose

that
ind

PψA
U (ψ) = (

⊕
x∈‘F×

dχσχ)⊕ dσ

where dχ ≥ 1, d ≥ 0 and σ is some representation of PψA . By degree comparison,
we have that

deg
( ⊕
χ∈‘F×

dχσχ
)
=
∑
χ∈‘F×

dχ deg(σχ) =
∑
χ∈‘F×

dχ deg(ρ)

Clearly ∑
χ∈‘F×

dχ deg(ρ) ≥ (q − 1) deg(ρ) = deg(ind
PψA
U (ψ)),

On the other hand, we have

deg(
⊕
χ∈‘F×

dχσχ) + ddeg(σ) = deg(ind
PψA
U (ψ)).

It follows that
d = 0, dχ = 1,∀χ ∈ F×.

Hence the result. □

Lemma 4.12. Let m = ah ∈MψA , where a ∈ Z and h ∈ HA. Then,

ΘN,ψA(m) = θ(a)ΘN,ψA(h).

Proof. We have

ΘN,ψA(m) = ΘN,ψA(ah)

=
1

|N |
∑
n∈N

Θθ(ahn)ψA(n)

=
1

|N |
∑
n∈N

Tr(π(ahn))ψA(n)

=
1

|N |
∑
n∈N

Tr(π(a)π(hn))ψA(n)

= ωπ(a)
1

|N |
∑
n∈N

Tr(π(hn))ψA(n)

= ωπ(a)ΘN,ψA(h)

where ωπ is the central character of π. Explicitly, we have

Θθ(a) = Tr(π(a)) = Tr(ωπ(a)) = ωπ(a) dim(π).

Using Theorem 2.2, it is easy to see that

Θθ(a) = θ(a) dim(π).

Thus, we have ωπ(a) = θ(a) and the result follows. □

Lemma 4.13. Let χ ̸= θ ∈ F̂×. Then

HomPψA
(π|PψA , σχ) = 0.

12



Proof. It is enough to show that dimC HomPψA
(π|PψA , σχ) = 0. Clearly, we have

dimC HomPψA
(π|PψA , σχ) = ⟨χπ|PψA , χσχ⟩

=
∑

zhn∈PψA

χπ(zhn)χσχ(zhn)

=
∑

hn∈HAN

∑
z∈Z

ωπ(z)χπ(hn)χ(z)χρ̃(hn)

=
∑

hn∈HAN

∑
z∈Z

θ(z)χ(z)χπ(hn)χρ̃(hn)

=
∑
z∈Z

θ(z)χ(z)
∑

hn∈HAN

χπ(hn)χρ̃(hn)

= ⟨θ, χ⟩
∑

hn∈HAN

χπ(hn)χρ̃(hn)

= 0

It follows that

HomPψA
(π|PψA , σχ) = 0,∀χ ∈ F̂×, χ ̸= θ.

□

Lemma 4.14. Consider the restriction θ|F× of the regular character θ. Then

σθ = ρ̃

as PψA representations.

Proof. Using Lemma 4.7 we have ωρ̃(z) = θ(z). Thus for p = zhn ∈ PψA , we have

σθ(zhn) = θ(z)ρ(hn)

= ωρ̃(z)ρ̃(hn)

= ρ̃(zhn).

□

4.1. Proof of the Main Theorem. For the sake of completeness, we recall the
statement below.

Theorem 4.15. Let θ be a regular character of F×
2n and π = πθ be an irreducible

cuspidal representation of G. Then

πN,ψA ≃ θ|F× ⊗ indHAUA µ

as MψA modules.
13



Proof. Using transitivity of induction and Lemma 4.11, we have that

HomG(π, ind
G
U ψ) = HomG(π, ind

G
PψA

(ind
PψA
U ψ))

= HomG(π, ind
G
PψA

(
⊕
χ∈‘F×

σχ))

=
⊕
χ∈‘F×

HomG(π, ind
G
PψA

σχ)

=
⊕
χ∈‘F×

HomPψA
(π|PψA , σχ)

= HomPψA
(π|PψA , σθ)⊕

⊕
θ ̸=χ∈‘F×

HomPψA
(π|PψA , σχ)

= HomPψA
(π|PψA , ρ̃)

Hence,

HomG(π, ind
G
U (ψ)) = HomPψA

(π|PψA , ρ̃) ≃ HomG(π, ind
G
PψA

ρ̃) ≃ HomMψA
(πN,ψA , ρ).

Using the multiplicity one theorem for GL(n) (see Theorem 2.4), we conclude that

dimC HomMψA
(πN,ψA , ρ) = 1

and it follows that
πN,ψA ≃ ρ

as MψA representations. □
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